Discovering Natural-Qualifier Space (NQ) via N-Cum Space (C_N)

(using differential and cumulation 'qualo-operators')

by Joy-to-You

About this Brief: This 'brief' (article) is meant to answer "early-questions" (about the F.E.D.* model) often asked by readers (including by this author). In answering those questions, both reader and author are led to "co-discover" F.E.D.'s **N**atural Qualifiers (**NQ**) by pathway perhaps different from the one originally discovered by Dr. Seldon. The math symbols used herein are used only for precision -- it is the questions, text, and figures which guide and explain the "co-discovery".

"Early-Questions"

When this student first began studying F.E.D.'s \mathbf{NQ} qualifiers and their additions and multiplications, he soon asked himself the typical *early-questions*, as you also may have asked -- questions such as:

- 1) Why is $\mathbf{NQ} := {\mathbf{q}_1, \mathbf{q}_2, \mathbf{q}_3, \dots}$ in sequential correspondence with $\mathbf{N} := {\mathbf{1}, \mathbf{2}, \mathbf{3}, \dots}$?
- **2)** Why does $\underline{\mathbf{q}}_n + \underline{\mathbf{q}}_n = \underline{\mathbf{q}}_n$?
- 3) Why can't the sum $\underline{\mathbf{q}}_{\mathbf{k}} + \underline{\mathbf{q}}_{\mathbf{n}}$ be in $\underline{\mathbf{NQ}}$, when $\mathbf{k} \neq \mathbf{n}$?
- 4) Why is the product, $\underline{\mathbf{q}}_{\mathbf{k}} \times \underline{\mathbf{q}}_{\mathbf{n}} = \underline{\mathbf{q}}_{\mathbf{n}} + \underline{\mathbf{q}}_{\mathbf{n}+\mathbf{k}}$, defined as it is, necessarily with a $\underline{\mathbf{q}}_{\mathbf{n}+\mathbf{k}}$ term?
- 5) Why is the product non-commutative?
- 6) Why does $(\underline{q}_1)^n = \underline{q}_1 + \underline{q}_2 + \dots + \underline{q}_n$? Was this intentional or just an elegant result?
- 7) "How do we know that each succeeding $\underline{\mathbf{g}}_{k+1}$ is qualitatively more definite than the previous $\underline{\mathbf{g}}_k$ when we write $\underline{\mathbf{g}}_1 \longrightarrow \underline{\mathbf{g}}_2 \longrightarrow \dots \longrightarrow \underline{\mathbf{g}}_n \longrightarrow \dots$?

We asked: "Why?" "Why? "Why?" just like a little kid.

And, our "adult-parent" kept answering, "Because it works this way."

"Because after much research, F.E.D. was led to define it in these ways."

"They have their reasons!" ...

"Because!"

Our little child quit asking just long enough for his "parent" (you/us) to study and discover enough – enough to begin to have some answers for our "child".

In writing about F.E.D.'s model [pages 7-8, F.<u>E.D.</u> <u>**Brief #3**</u>], this author made observations (which have stayed with him) in which " \underline{q}_1 " is likened to a "quality **e**", where "quantity **e**" is the natural exponential base in "**R**eal" ("pure-quantifier") space:

- a) First, $(\underline{\mathbf{q}}_1)^{n+m} = (\underline{\mathbf{q}}_1)^n \times (\underline{\mathbf{q}}_1)^m$ is an isomorphic map from **N** into { <u>Cumula</u> }, which is analogous to "exp(n) = eⁿ" in the "Reals": $\mathbf{e}^{n+m} = \mathbf{e}^n \times \mathbf{e}^m$, and;
- b) Second, $(\underline{q}_1)^{n+m} = \underline{q}_1 + \underline{q}_2 + ... + \underline{q}_2$, represents a 'Cum' or '''Sum''' function ... analogous to integrating the "purely-quantitative" " $\exp(t)$ " over the interval [0, n] ("epochs" 0 to n), where $\int \exp(t) dt$ [from t = 0 to n] "sums up" (is the "cumulative result" of) all historical (exponential) growth during those "epochs"!

c) For t in [0, n]: in *Quantitative space*: $e^n = e^0 + \int e^t dt$; and

in Qualitative space:
$$(\underline{q}_1)^n = q_0 + \underline{\Sigma} \underline{q}_t$$
.

So, not only is the " \underline{q}_1 " «*arché*»/"base" similar to the " \underline{e} " exponential base, but on the "epoch interval" [0, n], "(\underline{q}_1)ⁿ accumulates or sums-up" all " \underline{q}_t " qualifiers as the integral $\int \underline{e}^t dt$ "sums-up" all " $\underline{e}^t dt$ " quantities! In essence, the (\underline{q}_1)ⁿ function serves as both **a**) an exponential map from {**n**} into { \underline{q}_1 ⁿ}, and **b**) an accumulator of qualifiers, $\underline{\Sigma}\underline{q}_t$ – all in one "qualo-function"! Figure 1 illustrates the " \underline{e}^n vs.(\underline{q}_1)ⁿ" analogy, with each \underline{q}_t (as **t** increases) being regarded as "qualitatively more definite" or "more refined or polished", shall we say, than is \underline{q}_{t-1} .

<u>Figure 1</u>: Analogy between Quantitative area under \mathbf{e}^{t} vs. Qualitative elements: $(\mathbf{C}_{1})^{n}$ and \mathbf{q}_{n} .

'Idea Space' as 'Cumulation Space'

Our child's questioning has now turned into a mathematician's or philosopher's design question: "If we were to design a space of 'idea-numbers', which might serve as 'container' sets of "logical elements" or sets constituting an "idea-ontology," what properties would we require of such sets or set-numbers?"

Since we have studied the cumulation property embodied in $(\underline{\mathbf{q}}_1)^n$ and since hindsight is always perfect, we might require that those set-numbers correspond in a direct way with the "Natural" numbers, and that each successive set be contained in all succeeding sets:

$$\underline{C}_n$$
 within \underline{C}_{n+1} , or $\underline{C}_n \subset \underline{C}_{n+1}$ [for all **n** in **N**].

This "contained-in" relationship reflects our intuitive wish that the "quality-set/-number" \underline{C}_n grow as **n** grows, reflecting greater cumulative "quality" or "knowledge" of some sort.

Next, we might ask that the first **N**atural "1" be mapped into the first 'acCumulation' set, \underline{C}_1 , and that this set might be used to generate subsequent 'acCumulation sets', just as "1" generates any **n** under repeated addition: 1 + 1 + ... + 1 (**n** times) = **n** [for all **n** in **N**]. [*Note*: We are "discovering cumulation" first.]

But since $\underline{C}_k \subset \underline{C}_n$ (for k < n, where k, n are in \mathbb{N}), then \underline{C}_k union $\underline{C}_n = \underline{C}_n$, this would imply a simple set-type of addition: $\underline{C}_k + \underline{C}_n = \underline{C}_n$ when k < n, and consequently, an idempotent addition:

 $\underline{\mathbf{C}}_{n} + \underline{\mathbf{C}}_{n} = \underline{\mathbf{C}}_{n}$, when $\mathbf{k} = \mathbf{n}$ (since $\underline{\mathbf{C}}_{n}$ union $\underline{\mathbf{C}}_{n} = \underline{\mathbf{C}}_{n}$).

Because set-number *addition* is "non-generative", we need a "set-number *multiplication*" under which set-number \underline{C}_1 would generate set-number \underline{C}_n . Corresponding to how < 1 + > (n times) generates **n** (for all **n** in **N**), so $< \underline{C}_1 \times > (n \text{ times})$ would generate $\underline{C}_1 \times \underline{C}_1 \times ... \times \underline{C}_1 = (\underline{C}_1)^n := \underline{C}_n$ (for all **n** in **N**). This formulation also reflects our normal use of language in which we often (almost unconsciously) contend that our cumulative "knowledge grows exponentially".

These loosely-stated requirements would imply an 'exponential- \underline{C}_1 ' isomorphic map $exQ(_)$ from N to some "acCumulation space" such that 'exQ(1)' = \underline{C}_1 , and $exQ(n) = (\underline{C}_1)^n := \underline{C}_n$. Thus, for all n, m in N, $(\underline{C}_1)^{n+m} = (\underline{C}_1)^n \times (\underline{C}_1)^m$, i.e., $exQ(n) := (\underline{C}_1)^n := \underline{C}_n$ and $exQ(n+m) = exQ(n) \times exQ(m)$:

exQ(): $N \rightarrow \underline{C}_N := \{ exQ(n) := \underline{C}_n : \underline{C}_n = (\underline{C}_1)^n, \text{ for all } n \text{ in } N \} := "\underline{N}$ -Cumulation space".

Thus, our Cumulation or "**N**-Cum" space, \underline{C}_{N} , would have the following properties:

1) $\leq \underline{C}_{N}, \times, + > \text{ is isomorphic to } < N, +, \max() >, \text{ where } \underline{C}_{k} \times \underline{C}_{n} := \underline{C}_{k+n}, \text{ and where }$

 $\underline{C}_k + \underline{C}_n := \underline{C}_{\max\{k,n\}}$ s.t. $\max\{k, n\} = n$ if n > k; k if k > n, and s.t. each "idea-number \underline{C}_n " behaves as a set, representing a "container set-number" for some "cumulated set of ideas".

- 2) $\underline{\mathbf{C}}_n + \underline{\mathbf{C}}_n = \underline{\mathbf{C}}_n$ for each **n** in **N**.
- 3) $\underline{C}_k \longrightarrow \underline{C}_n \Leftrightarrow \underline{C}_k \subset \underline{C}_n \Leftrightarrow k < n$, with the new symbol, '—+', signing 'lower than' in 'total qualitative knowledge' or 'qualitative definiteness' [with ' \Leftrightarrow ' signing bi-directional implication].
- 4) $< \underline{\mathbf{C}}_{\mathbf{N}}, \, `-+` > \text{ is a total order, i.e., } \underline{\mathbf{C}}_1 -+ \underline{\mathbf{C}}_2 -+ \underline{\mathbf{C}}_3 -+ \dots$

Note: We recognize that increasing 'total qualitative knowledge' implies a greater capacity to refine or define whatever idea-set or "ontology" is emerging. Thus, this increased "defining" results in increased 'qualitative definiteness', as **n** increases. E.g., early man looked within the jungle's (or sky's) canopy and perceived a vaguely-understood "flat earth". Only by his increased knowledge has man recognized that such a "flat earth" is merely a small surface portion of a well-defined "oblate-spheroidal Earth", i.e., human knowledge has grown qualitatively more definite – at least in regard to these "scientific matters".

Defining <u>Q</u> using the 'Differential Qualo-Operator' <u>a</u>

At this point, we begin to consider the "incremental qualifier accretions" from \underline{C}_1 to \underline{C}_2 , from \underline{C}_2 to \underline{C}_3 , or generally, from \underline{C}_{n-1} to \underline{C}_n . We define these "qualifier increments" as ' $\underline{C}_n \sim \underline{C}_{n-1}$ ', where the tilde '~' denotes a "subtractive difference" as used in set notation: ' $\underline{C}_n \sim \underline{C}_{n-1}$ ' or ' $\underline{C}_n \setminus \underline{C}_{n-1}$ ', to denote "all elements in set \underline{C}_n but not in set \underline{C}_{n-1} ".

Closely related to this "incremental" or "difference set" is the notion of a "difference operator", or more precisely, a "differential operator", that operates on **N-Cum** space "Cums". This writer recalls reading (perhaps somewhere in the F.E.D. literature, citing C. Musés) where the article claims that in new number spaces the "linear" [partial] differential ∂ () and integral \int () operators might be as commonplace as the four binary operations: +, x, -, λ . So, we eagerly endow our Cum-space, \underline{C}_N , with 'qualo-' versions of such operators:

$$< \underline{C}_N, \underline{\times}, +; \underline{\partial}, \underline{l} > := \underline{N}$$
-Cumulation space with 'qualo-operators'

Without hesitation, we apply our differential 'qualo-operator' $\underline{\partial}$ on any element \underline{C}_n of \underline{C}_N to *define* $\underline{\mathbf{q}}_n$, for **n** and **k** in **N**, **k** < **n**, as:

$$\underline{\partial}(\underline{\mathbf{C}}_n) := \underline{\partial}\underline{\mathbf{C}}_n \big|_{\underline{\text{(with respect to)}}\underline{\mathbf{C}}_n} = \underline{\mathbf{C}}_n \sim \underline{\mathbf{C}}_{n-1} := \underline{\mathbf{q}}_n := \underline{\partial}\underline{\mathbf{C}}_n \Leftrightarrow \underline{\mathbf{C}}_n = \underline{\mathbf{C}}_{n-1} + \underline{\partial}\underline{\mathbf{C}}_n = \underline{\mathbf{C}}_{n-1} + \underline{\mathbf{q}}_n,$$

or more generally,

$$\underline{\partial \mathbf{C}}_{n}|_{\underline{\mathbf{C}}_{k}} = \underline{\mathbf{C}}_{n} ~ \mathbf{\underline{C}}_{n-k-1} := \underline{\boldsymbol{\Sigma}}\underline{\mathbf{q}}_{t}|_{t \text{ in } [n-k, n]} \Leftrightarrow \underline{\mathbf{C}}_{n} = \underline{\mathbf{C}}_{n-k-1} + \underline{\partial \mathbf{C}}_{n}|_{\underline{\mathbf{C}}_{k}} = \underline{\mathbf{C}}_{n-k-1} + \underline{\boldsymbol{\Sigma}}\underline{\mathbf{q}}_{t}|_{t \text{ in } [n-k, n]}$$

<u>Note</u>: Remember that ' $\underline{\mathbf{C}}_{n} \sim \underline{\mathbf{C}}_{n-1} := \underline{\mathbf{q}}_{n}$ ' denotes an "incremental qualitative difference", which says: " $\underline{\mathbf{C}}_{n}$ without $\underline{\mathbf{C}}_{n-1}$ defines (is) the $\underline{\mathbf{q}}_{n}$ qualifier".

Thus, $\underline{\partial}: \underline{C}_{N} \rightarrow \{\underline{q}_{n} = \underline{\partial}\underline{C}_{n}: n \text{ in } N\} = _{N}\underline{Q}$! We have defined ("co-discovered"!) that $_{N}\underline{Q}$ is the set of 'qualo-differentials' of 'Cumulation' space elements: $\underline{\partial}[\underline{C}_{N}] := _{N}\underline{Q}$. The differential operator operating on \underline{C}_{N} creates $_{N}\underline{Q}$, or $_{N}\underline{Q}$ is " $\underline{\partial}$ erived from" \underline{C}_{N} , its 'Cumulation space'. This answers early-question 1, as we have "co-discovered" $_{N}\underline{Q}$ in a new way!

Now, apply our linear 'qualo-operator' $\underline{\partial}$ to the idempotent 'Cum sum': $\underline{C}_n + \underline{C}_n = \underline{C}_n$, to obtain: $\underline{\partial}(\underline{C}_n + \underline{C}_n) = \underline{\partial}\underline{C}_n$ '+' $\underline{\partial}\underline{C}_n = \underline{\partial}\underline{C}_n$, which says $\underline{\mathbf{q}}_n$ '+' $\underline{\mathbf{q}}_n = \underline{\mathbf{q}}_n$ and defines the addition '+' of $\underline{\mathbf{NQ}}$ elements, answering early-question 2.

Next, assume the sum $\underline{\mathbf{q}}_{k} + \underline{\mathbf{q}}_{n} = \underline{\mathbf{q}}_{m}$ is in $_{N}\underline{\mathbf{Q}}$ (assuming $\mathbf{k} < \mathbf{n}$ and $\mathbf{m} \neq \mathbf{n}$, for \mathbf{m} , \mathbf{k} , and \mathbf{n} in \mathbf{N}). Then $\underline{\mathbf{q}}_{m} = \underline{\mathbf{q}}_{k} + \underline{\mathbf{q}}_{n} = \underline{\partial}\underline{\mathbf{C}}_{k} + \underline{\partial}\underline{\mathbf{C}}_{n} = \underline{\partial}(\underline{\mathbf{C}}_{k} + \underline{\mathbf{C}}_{n}) = \underline{\partial}(\underline{\mathbf{C}}_{n}) = \underline{\mathbf{q}}_{n}$, so $\underline{\mathbf{q}}_{m} = \underline{\mathbf{q}}_{n}$ or $\mathbf{m} = \mathbf{n}$, contradicting our assumption that $\mathbf{m} \neq \mathbf{n}$! Thus, by this *reductio ad absurdum* proof, $\underline{\mathbf{q}}_{k} + \underline{\mathbf{q}}_{n}$ cannot be in $\underline{\mathbf{N}}_{k}$, if $\mathbf{k} < \mathbf{n}$, answering early-question 3.

From the relation, $\underline{\mathbf{C}}_n = \underline{\mathbf{C}}_{n-1} + \underline{\mathbf{q}}_n$, we quickly discover (proven in Appendix A1) that, given $\underline{\mathbf{C}}_1 = \underline{\mathbf{q}}_1$, $\underline{\mathbf{C}}_2 = \underline{\mathbf{q}}_1 + \underline{\mathbf{q}}_2$, ..., and that $(\underline{\mathbf{q}}_1)^n = (\underline{\mathbf{C}}_1)^n = \underline{\mathbf{C}}_n = \underline{\mathbf{q}}_1 + ... + \underline{\mathbf{q}}_n$, as the result for $\underline{\mathbf{C}}_N$, as previously defined by F.E.D. for $(\underline{\mathbf{q}}_1)^n$, and answering early-question 6. These results also lead to the following conjectures on how the multiplication $(\underline{\mathbf{q}}_k \text{ "x" } \underline{\mathbf{q}}_n)$ of $\underline{\mathbf{q}}$ elements might be defined.

First, we know that this " \times " (possibly different from $\underline{x} =$ "Cumulation-Space-x") must satisfy the $(\underline{q}_1)^n = \underline{q}_1 + ... + \underline{q}_n$ relation/result [for all **n** in **N**].

Next, since $\underline{\mathbf{q}}_k := \underline{\partial \mathbf{C}}_k, \underline{\mathbf{q}}_n := \underline{\partial \mathbf{C}}_n$, and since $\underline{\mathbf{C}}_k \times \underline{\mathbf{C}}_n := \underline{\mathbf{C}}_{n+k}$, we necessarily have $\underline{\partial}(\underline{\mathbf{C}}_k \times \underline{\mathbf{C}}_n) = \underline{\partial}(\underline{\mathbf{C}}_{n+k}) := \underline{\mathbf{q}}_{n+k}$. Thus, we would expect/require that the " $\underline{\mathbf{q}}_{n+k}$ " term be part of the defined product, $\underline{\mathbf{q}}_k \times \underline{\mathbf{q}}_n := (\underline{\partial \mathbf{C}}_k) \times (\underline{\partial \mathbf{C}}_n)$, answering part of early-question 4.

Possible Multiplications on <u>Q</u> elements

So, perhaps the most-complex of the "simple product" definitions might be [for **k**, **n** in **N**]:

 $\underline{\mathbf{q}}_{k} \stackrel{*}{\times} \stackrel{*}{\underline{\mathbf{q}}}_{n} := (\underline{\partial \mathbf{C}}_{k})(\underline{\partial \mathbf{C}}_{n}) := (\underline{\partial \mathbf{C}}_{k}) + (\underline{\partial \mathbf{C}}_{n+k}) + (\underline{\partial \mathbf{C}}_{n}) = \underline{\mathbf{q}}_{k} + \underline{\mathbf{q}}_{n+k} + \underline{\mathbf{q}}_{n}$

[F.E.D. calls this product-definition "the meta-genealogical evolute product rule".].

So, a quick, non-exhaustive list of *possible definitions for multiplication* might be:

<u>**q**</u>_k "X" <u>**q**</u>_n := <u>**q**</u>_{n+k} , commutative [F.E.D. name: "meta-heterosis convolute product"];
<u>**q**</u>_k "X" <u>**q**</u>_n := <u>**q**</u>_k + <u>**q**</u>_{n+k} , non-commutative [F.E.D. name: "meta-catalysis evolute product"];
<u>**q**</u>_k "X" <u>**q**</u>_n := <u>**q**</u>_k + <u>**q**</u>_{n+k} + <u>**q**</u>_n, non-commutative [F.E.D. name: "double-«aufheben» evolute product"];
<u>**q**</u>_k "X" <u>**q**</u>_n := <u>**q**</u>_k + <u>**q**</u>_{n+k} + <u>**q**</u>_n, commutative [F.E.D. name: "meta-genealogical evolute product"];

Definition 1 must be ruled out immediately because it implies that:

$$(\underline{\mathbf{q}}_1)^2 = \underline{\mathbf{q}}_1 \text{ "x" } \underline{\mathbf{q}}_1 = \underline{\mathbf{q}}_{1+1} = \underline{\mathbf{q}}_2 \neq \underline{\mathbf{q}}_1 + \underline{\mathbf{q}}_2 = \underline{\mathbf{C}}_2,$$

so Definition 1 implies that $(\underline{q}_1)^2 \neq \underline{C}_2$, which denies what is required.

The other three definitions meet our $(\underline{q}_1)^n = \underline{C}_n$ criterion, as shown in Appendix A1.

We might also rule out Definition **4** because it is commutative, and we have implicitly required that "×" be defined with emphasis on just one of the two factors, namely $\underline{\mathbf{g}}_{\mathbf{k}}$ "×" $\underline{\mathbf{g}}_{\mathbf{n}} := \underline{\mathbf{g}}_{\mathbf{k}}$ "of" $\underline{\mathbf{g}}_{\mathbf{n}}$, where the "of" implies that the second factor ($\underline{\mathbf{q}}_{\mathbf{n}}$) has "more influence." This would suggest Definition **3**, not Definition **2**, so we might define $\underline{\mathbf{g}}_{\mathbf{k}}$ "of" $\underline{\mathbf{g}}_{\mathbf{n}}$ [for \mathbf{k} , \mathbf{n} in \mathbf{N}] as: $\underline{\mathbf{g}}_{\mathbf{k}}$ "×" $\underline{\mathbf{g}}_{\mathbf{n}} := \underline{\mathbf{g}}_{\mathbf{n}} + \underline{\mathbf{g}}_{\mathbf{k}+\mathbf{n}}$, exactly as was done in the F.E.D. model! This answers early-questions **4-5**.

<u>Notes</u>: 1) $\mathbf{g}_{\mathbf{k}}$ " \mathbf{x} " $\mathbf{g}_{\mathbf{n}} := \mathbf{g}_{\mathbf{n}} + \mathbf{g}_{\mathbf{n}+\mathbf{k}} \stackrel{\texttt{1}}{\neq} \mathbf{g}_{\mathbf{n}}$ " \mathbf{x} " $\mathbf{g}_{\mathbf{k}} := \mathbf{g}_{\mathbf{k}} + \mathbf{g}_{\mathbf{k}+\mathbf{n}}$, i.e., these two products are "qualitativelyunequal", ($\frac{\texttt{1}}{\texttt{2}}$), because their first terms (their "Boolean" or "conservation" terms), $\mathbf{g}_{\mathbf{n}}$ vs. $\mathbf{g}_{\mathbf{k}}$, if $\mathbf{n} \neq \mathbf{k}$, differ qualitatively. 2) *Addition* of $\mathbf{N} \stackrel{\texttt{Q}}{=}$ elements (terms) <u>is</u> commutative (analogous to "set-union" being commutative). 3) A *non*-commutative " \mathbf{x} " multiplication was defined for the 'qualo-differential' elements (i.e., for all of the $\mathbf{g}_{\mathbf{n}}$ in $\mathbf{N} \stackrel{\texttt{Q}}{=}$ even though the 'cum- $\underline{\mathbf{x}}$ ' of 'Cumulation space' ($\underline{\mathbf{C}} \stackrel{\texttt{N}}{=}$) is *commutative*.

[Only early-question **7** remains to be answered: "How do we know that each succeeding \mathbf{g}_{k+1} is qualitatively more definite than the previous \mathbf{g}_k , as implied when we write $\mathbf{g}_1 \longrightarrow \mathbf{g}_2 \longrightarrow \cdots \longrightarrow \mathbf{g}_n \longrightarrow \cdots$? To answer this, we appeal to the analogy between \mathbf{e}^n and $(\mathbf{g}_1)^n$ discussed earlier. In Figure 1 we "see" that each increment of " $\mathbf{e}^t \mathbf{d} t$ " grows and is quantitatively larger than any previous one, as t grows. Although we cannot directly account for the "qualitative definiteness" of each $\underline{\partial}(\mathbf{g}_1)^n := \mathbf{g}_n$, we can "reason by analogy", and by our "<u>Note</u>" on "increasing definiteness", p. **3**. Both support our case for increasing "qualitative definiteness" of each successive qualitative-increment (qualifier), as **n** increases. Hopefully this argument answers early-question **7** for now, for generic \mathbf{NQ} 'meta-numerals', until one gets into *specific models*, i.e., *interpretations/assignments* of the { \mathbf{g}_n } to *specific* ontological categories.]

Using the 'Cumulation Operator' [

The 'Cumulation operator', or 'qualo-integral', $\int ($, acting on $_{NQ}$ elements, produces all of **N-Cum**ulation space', viz., for **n** and **k** in **N**, with **k** < **n**:

$$[: _{\mathbf{N}}\underline{\mathbf{Q}} \rightarrow \{\underline{\mathbf{C}}_{n}: n \text{ in } \mathbf{N}\} := \underline{\mathbf{C}}_{\mathbf{N}}, \text{ defined by } [(\underline{\partial}\underline{\mathbf{C}}_{n})|_{\text{on } [0, n]} := [\underline{\mathbf{f}}(\underline{\mathbf{q}}_{n})|_{\text{on } [0, n]} := \underline{\mathbf{C}}_{n} \text{ or more generally,}$$

$$\underbrace{ \left[(\underline{\partial \mathbf{C}}_n) \right]_{\mathrm{on} [k, n]} := \underbrace{ \left[(\underline{\partial \mathbf{C}}_n) \right]_{\mathrm{on} [0, n]} \sim \underbrace{ \left[(\underline{\partial \mathbf{C}}_n) \right]_{\mathrm{on} [0, k]} = \underline{\mathbf{C}}_n \sim \underline{\mathbf{C}}_k = \underline{\boldsymbol{\Sigma}} \underline{\mathbf{q}}_t \Big|_{t \, \mathrm{in} [k+1, n]} }$$

So, we can define \underline{C}_{N} as the set that results from the 'qualo-integration', or 'qualo-cumulation', of all elements in '*differential space*' $\underline{N}\underline{Q}$: $[(\underline{N}\underline{Q}) = \underline{C}_{N}$. Thus, the cumulation operator \underline{I} , operating on $\underline{N}\underline{Q}$, "resurrects" \underline{C}_{N} !

Thus, for any Natural n, we have: $\underline{\partial}(\mathbf{exQ}(n)) = \underline{\mathbf{q}}_n := \mathbf{q}(n)$ or, in terms of functional composition: $\underline{\partial}\mathbf{exQ}() := \mathbf{q}()$, the "quality map" from N onto \underline{NQ} . Then, the 1:1-ness of these maps allows us to define inverse mappings, $\mathbf{exQ}^{-1}(\underline{\mathbf{C}}_n) := \mathbf{loQ}(\underline{\mathbf{C}}_n) := \mathbf{n}$ and $\mathbf{q}^{-1}(\underline{\mathbf{q}}_n) := \mathbf{n} := \mathbf{id}_{\mathbf{N}}(n)$, so: $\mathbf{loQ}([\mathbf{q}(n)) = \mathbf{n} = \mathbf{q}^{-1}(\mathbf{q}(n))$, or $\mathbf{loQ}[:= \mathbf{q}^{-1}\mathbf{q} := \mathbf{id}_{\mathbf{N}}()$, where ' $\mathbf{id}_{\mathbf{N}}()$ ' denotes 'the identity function' for the elements of N under 'composition of functions'. Figure 2 summarizes functional relationships among \mathbb{N} , $\underline{\mathbb{C}}_{\mathbb{N}}$, $\underline{\mathbb{K}}_{\mathbb{N}}\underline{\mathbb{Q}}$, via the paired inverse functions -q() and $q^{-1}()$, exQ() and loQ(), and $\underline{\partial}()$ and $\underline{\int}()$. It also depicts "Open Qualifier space" as containing both $\underline{\mathbb{C}}_{\mathbb{N}} \underline{\mathbb{K}}_{\mathbb{N}}\underline{\mathbb{Q}}$ spaces since "OQ space" is the space of all possible qualifier sums (including 'idempotent sums' or 'single-element sums') arising from $\underline{\mathbb{Q}}$ qualifiers under addition $\underline{\mathbb{K}}$ multiplication. (No, "OQ space" is not "like a bunny rabbit's head"! Any such resemblance simply manifests this author's limited artistic skills.)

Figure 2: Relationships of N, \underline{C}_N , and \underline{N}_Q via q(), q^{-1} (), exQ(), loQ(), $\underline{\partial}_A$, and \underline{f}_A .

Summary

We first learned F.E.D. theory as: The defined set of natural qualifiers, $\mathbf{N}_{\mathbf{N}}^{\mathbf{Q}}$, its properties, and its addition and multiplication operations. Then $(\mathbf{q}_1)^n$ was shown to be the **n**-th cumulum, and finally the set of cumula under Cum-× was shown to be isomorphic to the **N**aturals under **N** addition. Our "early-questions" about the theory led us to "answers", by "exploring-in-reverse": We first defined a "Cumulation" space $\underline{\mathbf{C}}_{\mathbf{N}}$ by an "exQ" isomorphic mapping from **N**, then, via the 'qualo-differential' operator $\underline{\mathbf{\partial}}$, we made a "co-discovery" of $\mathbf{N}_{\mathbf{N}}^{\mathbf{Q}}$, its elements, its addition, and its multiplication rules!

-- Joy-to-You (June 2012)

*F.<u>E.D.</u> = Foundation <u>Encyclopedia Dialectica</u>, authors of the book <u>A Dialectical "Theory of Everything"</u> – Meta-Genealogies of the Universe and of Its Sub-Universes: A Graphical Manifesto, Volume 0: Foundations. Websites providing free download of F.E.D. "primer" texts include -www.dialectics.org and <u>www.adventures-in-dialectics.org</u> Appendix A1 – Proofs that $(\underline{q}_1)^n = \underline{C}_n = \underline{q}_1 + \dots + \underline{q}_n$ under various defined multiplication rules

We do not know *a priori* that the **n**-th Cumulation, \underline{C}_n , is equal to the **n**-th Cumulum, $\underline{q}_1 + \ldots + \underline{q}_n$, i.e. it must be shown that $\underline{C}_n = \underline{q}_1 + \ldots + \underline{q}_n$. By definitions, $\underline{C}_n := \underline{C}_{n-1} + \frac{\partial C}{\partial n} := \underline{C}_{n-1} + \underline{q}_n$, so if we show that $\underline{C}_k = \underline{q}_1 + \ldots + \underline{q}_k$, we have, by finite induction, that $\underline{C}_{k+1} := \underline{C}_k + \underline{q}_{k+1} = \underline{q}_1 + \ldots + \underline{q}_k + \underline{q}_{k+1}$, i.e., that the **k**+1st-Cumulation is in fact the **k**+1st-Cumulum, given the truth of "base clause" $\underline{C}_1 = \underline{q}_1$.

Our short, non-exhaustive list of *possible definitions for* <u>Q</u> *multiplication* is:

1. \underline{q}_{k} "×" $\underline{q}_{n} := \underline{q}_{n+k}$; 2. \underline{q}_{k} "×" $\underline{q}_{n} := \underline{q}_{k} + \underline{q}_{n+k}$; 3. \underline{q}_{k} "×" $\underline{q}_{n} := \underline{q}_{n+k} + \underline{q}_{n}$; 4. \underline{q}_{k} "×" $\underline{q}_{n} := \underline{q}_{k} + \underline{q}_{n+k} + \underline{q}_{n}$.

Multiplication Definition 1 was ruled out immediately because it implied that $(\underline{\mathbf{q}}_1)^2 \neq \underline{\mathbf{C}}_2$, which denies what is required. We shall now show that Definitions 2 through 4 all lead to $(\underline{\mathbf{q}}_1)^n = \underline{\mathbf{C}}_n$ for any **n** in **N**. In each case, the "base clause" $\underline{\mathbf{C}}_1 := \underline{\mathbf{q}}_1$ is true by definition.

Using Definition 2, we have that $(\underline{q}_1)^2 = \underline{q}_1 \text{ "x" } \underline{q}_1 = \underline{C}_1 \text{ "x" } \underline{q}_1 = \underline{q}_1 + \underline{q}_{1+1} = \underline{q}_1 + \underline{q}_2 := \underline{C}_2$. Assume that this generalizes to: $(\underline{q}_1)^k = \underline{C}_{k-1} \times \underline{q}_1$, for k in N. Assume that $(\underline{q}_1)^n = \underline{C}_n$ is true for $\mathbf{n} = \mathbf{k}$, i.e., that $(\underline{q}_1)^k = \underline{q}_1 + \underline{q}_2 + ... + \underline{q}_k := \underline{C}_k$. Then prove the "recursion clause", that $(\underline{q}_1)^{k+1} = \underline{C}_k \times \underline{q}_1 = (\underline{q}_1 + \underline{q}_2 + ... + \underline{q}_k) \times \underline{q}_1 = \underline{C}_{k+1}$. So, $(\underline{q}_1)^{k+1} = (\underline{q}_1 \times \underline{q}_1) + (\underline{q}_2 \times \underline{q}_1) + ... + (\underline{q}_k \times \underline{q}_1) = (\underline{q}_1 + \underline{q}_2) + (\underline{q}_2 + \underline{q}_3) + ... + (\underline{q}_k + \underline{q}_{k+1})$ $= (\underline{q}_1 + \underline{q}_1 + ... + \underline{q}_1) + \underline{q}_2 + \underline{q}_3 + ... + \underline{q}_k + \underline{q}_{k+1} = \underline{q}_1 + \underline{q}_2 + \underline{q}_3 + ... + \underline{q}_k + \underline{q}_{k+1} = \underline{C}_{k+1}$.

Thus, by finite induction, the equation $(\underline{q}_1)^n = \underline{C}_n$ is true for all **n** in **N** for Multiplication Definition 2.

Similarly for Definition 3. Given $(\underline{q}_1)^n = \underline{C}_n$ for n = k, i.e. $(\underline{q}_1)^k = \underline{C}_{k-1} \times \underline{q}_1 = \underline{q}_1 + \underline{q}_2 + ... + \underline{q}_k := \underline{C}_k$, prove that $(\underline{q}_1)^{k+1} = \underline{C}_k \times \underline{q}_1 = (\underline{q}_1 + \underline{q}_2 + ... + \underline{q}_{k-1} + \underline{q}_k) \times \underline{q}_1 = \underline{C}_{k+1}$. So, $(\underline{q}_1)^{k+1} = (\underline{q}_1 \times \underline{q}_1) + (\underline{q}_2 \times \underline{q}_1) + ... + (\underline{q}_k \times \underline{q}_1) = (\underline{q}_1 + \underline{q}_2) + (\underline{q}_1 + \underline{q}_3) + ... + (\underline{q}_1 + \underline{q}_k) + (\underline{q}_1 + \underline{q}_{k+1})$ $= (\underline{q}_1 + \underline{q}_1 + ... + \underline{q}_1) + \underline{q}_2 + \underline{q}_3 + ... + \underline{q}_k + \underline{q}_{k+1} = \underline{q}_1 + \underline{q}_2 + \underline{q}_3 + ... + \underline{q}_k + \underline{q}_{k+1} = \underline{C}_{k+1}$.

Thus, by finite induction, the equation $(\underline{\mathbf{q}}_1)^n = \underline{\mathbf{C}}_n$ is true for all **n** in **N** for Multiplication Definition **3**.

Finally, for Definition 4, Given
$$(\underline{a}_1)^n = \underline{C}_n$$
 for $n = k$, i.e. $(\underline{a}_1)^k = \underline{C}_{k-1} \times \underline{a}_1 = \underline{a}_1 + \underline{a}_2 + ... + \underline{a}_k := \underline{C}_k$,
prove that $(\underline{a}_1)^{k+1} = \underline{C}_k \times \underline{a}_1 = (\underline{a}_1 + \underline{a}_2 + ... + \underline{a}_k) \times \underline{a}_1 = \underline{C}_k$.
So, $(\underline{a}_1)^{k+1} = (\underline{a}_1 \times \underline{a}_1) + (\underline{a}_2 \times \underline{a}_1) + ... + (\underline{a}_k \times \underline{a}_1)$
 $= (\underline{a}_1 + \underline{a}_2 + \underline{a}_1) + (\underline{a}_2 + \underline{a}_3 + \underline{a}_1) + ... + (\underline{a}_k + \underline{a}_{k+1} + \underline{a}_1)$
 $= (\underline{a}_1 + \underline{a}_1 + ... + \underline{a}_1) + \underline{a}_1 + \underline{a}_2 + \underline{a}_3 + ... + \underline{a}_k + \underline{a}_{k+1} = \underline{C}_{k+1}$.

Thus, by finite induction, the equation $(\underline{\mathbf{q}}_1)^n = \underline{\mathbf{C}}_n$ is true for all **n** in **N** for Multiplication Definition 4.