F.E.D. Preface to E.D. Brief \#7, on the \mathcal{Z}_{2}, by Guest Author "J2Y"
by Hermes de Nemores, General Secretary to the F.E.․․ General Council

Commentary on E.․․ Brief \#7. Our new guest author, known pseudonymously as " $\underline{\underline{J} o y-t \underline{-Y}-\underline{Y} \text { " ", and whom I shall }}$ reference herein, using the nickname with which he often references himself in our correspondence -- "J2Y" -- has provided to you, our readers, a new and highly-accessible «entrée» into the third stage within $\underline{\underline{Q} \text {, the 'meta-system' of the }}$ F.E.․․ 'First Dialectical Arithmetics': namely, into the $\underline{\underline{Q} \text { Q }}$ axioms-system of dialectical arithmetic, with its core set, or space, of dialectical, 'Integer-based, or Z-numbers-based, purely-qualitative meta-numbers' --

$$
\underline{\underline{Q}} \equiv\left\{\ldots, \underline{\mathbf{q}}_{-3}, \underline{\mathbf{q}}_{-2}, \underline{\mathbf{q}}_{-1}, \mathbf{q}_{ \pm 0}, \underline{\mathbf{q}}_{+1}, \underline{\mathbf{q}}_{+2}, \underline{\mathbf{q}}_{+3}, \ldots\right\}
$$

This new Brief, $\underline{E} . \underline{\underline{D}}$. Brief \#7, caps a trilogy of Briefs prepared for you by J2Y, since late June 2012, on the $\mathbf{N} \underline{\underline{Q}}$, the $\mathrm{w} \underline{\underline{\mathrm{Q}}}$, and the $\underline{\underline{\underline{Q}}} \underline{\text { dialectical arithmetics, } \&} \boldsymbol{\&}$ their exotic arithmetical/algebraic 'ideo-ontology' and 'ideo-phenomenology'.

In each Brief of this trilogy, J2Y has alluded to the rising degree of "definiteness" -- of " 'determinate-ness'", or of 'features-richness' -- expected to grow with every transition from term to 'Qualo-Peanic' successor term in a dialectical categorial progression, including in a dialectical [axioms-]systems progression, such as the one that J2Y has presented for you in his last three Briefs. We think the contents of these Briefs themselves provide specific "self evidence" of -- i.e., in themselves provide instantiation of, $\boldsymbol{\&}$ data supporting -- this expectation regarding dialectical progression in general.

J2Y's Brief \#5, on the $\underline{N} \underline{\underline{Q}}$ system of dialectical arithmetic, required 7 pages of text to achieve a satisfactory degree of specificity regarding that first system. His Brief \#6, on the $\underline{\underline{w} \underline{\underline{Q}}}$ system, required 8 pages of content to satisfactorily cover the new features -- the $\boldsymbol{\Delta}_{\underline{N}} \underline{\underline{Q}}={ }_{\underline{A}} \underline{\underline{Q}}$ incremental new 'ideo-ontology' -- of that second system. His $\underline{\text { Brief \#7 }}$, on the $\underline{\underline{\underline{Q}}} \underline{\underline{\underline{Q}}}$ system, took 19 pages of text to adequately address the new 'ideo-phenomena' -- the $\boldsymbol{\Delta}\left[\underline{\underline{N}} \underline{\underline{\underline{Q}}} \underline{\underline{A}}_{\underline{\underline{Q}}}\right]$ incremental new 'ideo-ontology' -- of that third system. The escalation from 7 units to 8 units to 19 units -- using page units of expository text as a crude proxy for the 'features-richness' being exposited thereby and therein -- exhibits the kind of acceleration of "definiteness" to which J2Y often alluded therein.

What J2Y has accomplished for you, in $\underline{E} . \underline{D}$. $\underline{\text { Brief \#7 }}$, is to develop a single new '"idea-object'", denoted $\underline{\mathbf{C}}_{\underline{z}}$, with which he shows how to co-generate, in a coordinated way, key new features of the $\underline{\underline{Z}}_{\underline{\underline{Q}}}$ axioms-system, which are not ["yet"] extant in the $\underline{\underline{\mathbf{N}} \underline{\underline{Q}}}$ axioms-system, or even in the $\underline{\underline{\mathbf{w}}} \underline{\underline{\underline{Q}}}$ axioms-system. He does so by way of subsuming, into a "pure-qualifiers" arithmetic, the "purely-quantitative" arithmetic of the Standard Integers, the new kind of ["signed"] numbers contained in the set, or space --

$$
\mathbb{Z} \equiv\{\ldots-3,-2,-1, \pm 0,+1,+2,+3, \ldots\}
$$

-- vis-à-vis the \mathbf{W} and the \mathbf{N} number-spaces, showing how to unify some of the amazingly novel characteristics of the $\underline{\underline{Q}}$ axioms-system of "purely-qualitative", dialectical arithmetic.

These novel features of $\underline{\underline{\underline{Q}}} \underline{\underline{\underline{Q}}}$, vis-à-vis $\underline{\underline{\underline{Q}}} \underline{\underline{Q}}$, and $\underline{\underline{\mathbf{N}}} \underline{\underline{\underline{Q}}}$, as well as vis-à-vis other, "standard", arithmetics, include --

1. Continuation of the "identity" of the additive identity element with the multiplicative identity element, which first emerged, as \boldsymbol{q}_{0}, in $\underline{\underline{Q}} \underline{\text {, now }}$ in the form of $\boldsymbol{q}_{ \pm 0}$, in $\underline{\underline{Q}}: \underline{\underline{q}}_{\mathbf{z}}+\mathbf{q}_{ \pm 0}=\underline{\underline{q}}_{\mathbf{z}}=\underline{\mathbf{q}}_{\mathbf{z}} \times \mathbf{q}_{ \pm 0}=\underline{\mathbf{q}}_{\mathbf{z}}+\mathbf{q}_{ \pm 0}+\underline{q}_{\mathbf{z} \pm 0}$ $=\mathbf{q}_{\mathbf{z}}+\mathbf{q}_{\mathbf{z}}=\mathbf{q}_{\mathbf{z}}$ [using the $\mathbf{F} . \underline{E} . \underline{D}$. 'meta-genealogical evolute product' rule for $\underline{\underline{\underline{Q}}} \mathbf{\underline { 1 }}$ multiplication]; \ldots
2. Now with the added twist, in $\underline{Q}^{\mathbf{Q}}$, for the first time, that additive inverses and multiplicative inverses are equal as well:

$$
\underline{q}_{+z}+\underline{q}_{z}=\mathbf{q}_{ \pm 0}=\underline{q}_{+z} \times \underline{q}_{\mathbf{z}}=\underline{q}_{+z}+\underline{q}_{z}+\underline{\mathbf{q}}_{(+z)+(-z)}=\mathbf{q}_{ \pm 0}+\mathbf{q}_{ \pm 0}=\mathbf{q}_{ \pm 0} ;
$$

3. Equivalent expressions of ${ }_{z} \underline{\underline{\mathbf{Q}}}$, generated by "revolving" signs around the $\underline{\mathbf{q}}$ symbol as center, e.g., counter-clockwise:

$$
-\underline{q}_{+z}^{+1}=+\underline{q}_{-z}^{+1}=+\underline{q}_{+z}^{-1}
$$

4. The emergence, in $\underline{\underline{Q}}$, for the first time, of what might have been expected to "wait" until $\mathbb{Q} \mathbf{Q}$, namely, of ' $\mathbf{q u a l i f i e r}$
 'qualifier division' operation, as a partial inverse operation of the $\overline{\underline{Q}}$ ' 'qualifier multiplication' operation, viz. --

- for all \mathbf{z} in $\mathbf{Z}: \underline{\mathbf{q}}_{+\mathbf{z}}=\underline{\mathbf{q}}_{+\mathbf{z}} / \mathbf{q}_{ \pm 0}=\mathbf{q}_{ \pm 0} / \underline{\mathbf{q}}_{-\mathbf{z}} ; \underline{\mathbf{q}}_{-\mathbf{z}}=\underline{\mathbf{q}}_{\mathbf{z}} / \mathbf{q}_{ \pm 0}=\mathbf{q}_{ \pm 0} / \mathbf{q}_{+\mathbf{z}}$, including $-\mathbf{q}_{ \pm 0}=+\mathbf{q}_{ \pm 0}= \pm \mathbf{q}_{ \pm 0} / \pm \mathbf{q}_{ \pm 0}$;
- for all \mathbf{Z} in $\mathbf{Z}: \underline{q}_{\mathbf{z}} / \mathbf{q}_{\mathbf{z}}=\left[\underline{q}_{\mathbf{z}}\right]^{+1} \times\left[\underline{q}_{\mathbf{z}}\right]^{-1}=\left[\underline{q}_{\mathbf{z}}\right]^{-1} \times\left[\underline{q}_{\mathbf{z}}\right]^{+1}=\left[\underline{q}_{\mathbf{z}}\right]^{ \pm 0}=\mathbf{q}_{ \pm 0}$, including $\left[\mathbf{q}_{ \pm 0}\right]^{ \pm 0}=\mathbf{q}_{ \pm 0}$;
\bullet for all \mathbf{Z} in $\mathbf{Z}:\left[\underline{q}_{+z} / \mathbf{q}_{ \pm 0}\right] \times\left[\mathbf{q}_{ \pm 0} / \mathbf{q}_{+z}\right]=\left[\underline{q}_{+z} / \underline{q}_{+z}\right]=\left[\underline{q}_{\mathbf{z}}\right]^{+1-1}=\left[\underline{q}_{\mathbf{z}}\right]^{-1+1}=\left[\underline{q}_{\mathbf{z}}\right]^{ \pm 0}=\mathbf{q}_{ \pm 0}$;
\bullet for all j, k in $Z:\left[\underline{q}_{k} / \mathbf{q}_{j}\right]^{-1}=\left[\underline{q}_{j} / \mathbf{q}_{k}\right]^{+1}=\underline{q}_{+j}+\underline{q}_{k}+\underline{q}_{+j-k} ;\left[\underline{q}_{j} / \underline{q}_{k}\right]^{-1}=\left[\underline{q}_{k} / \underline{q}_{j}\right]^{+1}=\underline{q}_{+k}+\underline{q}_{j}+\underline{q}_{+k-j} ;$
\bullet for all \mathbf{Z} in $\mathbf{Z}:-1 \times \underline{\underline{q}}_{+\mathbf{z}}=\underline{\mathbf{q}}_{-\mathbf{z}} ;-1 \times \underline{\mathbf{q}}_{\mathbf{z}}=\underline{\mathbf{q}}_{+\mathbf{z}} ;+1 \times \underline{\underline{q}}_{+\mathbf{z}}=\underline{\mathbf{q}}_{+\mathbf{z}} \mathbf{\&}+1 \times \underline{\mathbf{q}}_{\mathbf{z}}=\underline{\mathbf{q}}_{\mathbf{z}} ;$
- for all \mathbf{Z} in \mathbf{Z} : $\pm 0 \times \underline{q}_{\mathbf{z}}=\mathbf{q}_{ \pm 0}$, so $\mathbf{0} \mathbf{q}_{\mathbf{z}}=\mathbf{q}_{\mathbf{z}}{ }^{0}=\mathbf{q}_{\mathbf{0}}$.

For the F.E.․ research collective, this dialectical arithmetic, $\underline{\underline{\mathbf{Q}}}$, the third step in the 'meta-systematic meta-evolution'
 us, a feeling of particularly acute irony for the progression inside $\underline{\underline{Q}}$. On one hand, the ${ }_{2} \underline{\underline{Q}}$ arithmetic presents some of the most astounding arithmetical 'ideo-phenomena' we had ever encountered, as glossed above. On the other, because it models especially the second «species» in the «species»-dialectic inside the «genos» category of "opposition" --

complementary opposition $\boldsymbol{Э}$ annihilatory opposition $\boldsymbol{Э}$ supplementary opposition

-- namely, the annihilatory kind, all of those astounding features "go to waste" for most 'meta-modeling' uses. That is, assigning the «arché» ontological category of a dialectical categorial progression to either \mathbf{q}_{-1} or \mathbf{q}_{+1}, in a Seldon Function, generates two equivalent progressions, one in which all of the generic qualifiers in the generic progression have positive signs, the other in which all of the generic \mathbf{q} ualifiers have negative signs. One thus might as well stay with $\underline{\underline{w}} \underline{\underline{Q}}$ for model building, as using $\underline{\underline{Q}}$ in this way offers no enrichment over $w \underline{\underline{Q}}$ modeling. Combining both «arché», as --

$$
H_{h}=\left[\underline{q}_{-1}+\underline{q}_{+1}\right]^{2^{h}}=\left[q_{ \pm 0}\right]^{2^{h}}=q_{ \pm 0}
$$

-- in the generic Seldon Function produces something even worse: the value of the Seldon Function for all epochs, \mathbf{h}, is the same, namely $\mathbf{q}_{ \pm 0}$, signifying a total " $\boldsymbol{d e}$-manifestation'" of all ontology for all time. This yields only "'nihilist'" 'meta-models' of the universe, and of its sub-universes, for which we have little use. That's where J2Y's new, alternative
 our $\boldsymbol{f} \cdot \underline{\mathbf{q}}_{+\mathbf{z}}+\underline{\mathbf{q}}_{\mathbf{z}}=\mathbf{q}_{ \pm 0}$, may avert the "mutually annihilatory" propensity of our $\underline{\mathbf{q}}_{\mathbf{z}}$ in his $\underline{\mathbf{q}}_{\mathbf{z}}$, making the later more suitable for the formulation of more useful dialectical 'meta-models'. We are investigating this possibility, with J2Y, right now.

Background for E.․․ Brief \#7. F.E.․․ presents the systems-progression of the 'Gödelian Dialectic' of the axiomssystems of the standard arithmetics, in their first-order-and-higher-logics' axiomatizations, in accord with a Dyadic Seldon Function 'meta-model', which describes -- ideographically, and "purely-qualitatively" -- a 'Meta-Systematic Dialectical' order-of-presentation, and dialectical method-of-presentation, of those successive systems of arithmetic. Using the notational convention that, if \mathbf{X} denotes the standard number-space, or number-set, of a given kind of standard number, then that symbol, with a single underscore, $\underline{\mathbf{X}}$, will be used to denote its first-and-higher-order-logic axiomatization, we have that this F.E.․․ order-of-presentation can be expressed as follows, using \# as a tag for the total «genos» of the standard arithmetics, comprehending all of its «species», in the following, progressive ordering --

-- and the Dyadic Seldom Function-based 'dialectical meta-model' which generates that progression is --

Connected with the above-rendered order-of-presentation, F.E.․․ presents the dialectical progression of the particular «species» of first-order-logic-only axiomatized dialectical arithmetics [denoted generically by $\underline{\underline{\mathbf{X}}}$], that reside "'inside"" the «genos» of F.E.E.․'s $\underline{\underline{Q}}$ 'First Dialectical Arithmetics meta-system', in a corresponding order --

-- using \# as a tag for the total «genos» of the F.E.․․ $\underline{\text { non }}$-standard, Dialectical Arithmetics. The Dyadic Weldon Function-based 'dialectical meta-model' which generates that progression is --

In $\underline{E} . \underline{D}$. Brief \#5, J2Y gave you his able \& novel derivation of the $\mathbf{N} \underline{Q}$, basing the first $\underline{\underline{s} t a g e}$ of the dialectic within $\underline{\underline{\underline{Q}}!}$ In $\underline{E} . \underline{D}$. Brief \#6, he provided his innovative derivation of the $w \underline{Q}$, basing the second $\underline{\text { stage }}$ of the dialectic inside $\underline{\underline{Q}!!}$ In $\underline{E} . \underline{D}$. Brief \#7, he now presents for you a pathway to the $\mathcal{Z}_{\underline{Q}}$, basing the third $\underline{\text { stage }}$ of the dialectic of the $\underline{\underline{\underline{Q}}!!!}$ What J2Y has done is to illuminate a first 3 steps of the vast $\underline{E} . \underline{D}$. 'double-dialectic' / 'bidirectional dialectic' --

The axioms of the core axioms sub-set of the F.E.D. Q axioms-system for dialectical arithmetic are as follows --
(§1) $[\forall \mathbf{Z} \in \mathbb{Z}]\left[\underline{\mathbf{q}}_{\mathbf{z}} \in \mathbb{Q}\right.$] [the axiom of «uufheben» connexion, or of subsumption [of the subsumption of the \mathbb{Z} by the \bar{z} 의].

(§4) $[\forall \mathbf{j}, \mathbf{k} \in \mathbb{Z}]\left[[\mathbf{j} \geqslant \mathbf{k}] \Rightarrow\left[\underline{q}_{\mathbf{j}} \frac{\mathbf{q}_{\mathbf{k}}}{}\right]\right][$ axiom of the qualitative uniqueness of distinct \mathbb{Z}-based ontological qualifiers $]$.

(§6) $\left.[\forall \mathbf{i}, \mathbf{j}, \mathbf{k} \in \mathbb{Z}-\{ \pm \mathbf{0}\}][\mathbf{j} \underset{<}{\geqslant} \mathbf{k}] \Rightarrow\left[\underline{\mathbf{q}}_{\mathbf{j}} \pm \mathbf{q}_{\mathbf{k}} \mathbf{q}_{\mathbf{i}}\right]\right][$ axiom of irreducibility for \mathbb{Z}-based qualitutive sums $]$.

(§8) $[\forall \mathbf{j}, \mathbf{k} \in \mathbb{Z}]\left[\mathbf{q}_{\mathbf{j}}+\underline{\mathbf{q}}_{\mathbf{k}}=\mathbf{q}_{\mathbf{j}}+\mathbf{q}_{\mathbf{k}}\right][$ axiom of + commutativity of \mathbb{Z}-based qualitative) qualifier sums $]$.
(§9) $[\forall \mathbf{z} \in \mathbb{Z}]\left[\mathbf{q}_{\mathbf{z}}+\mathbf{q}_{ \pm 0}=\mathbf{q}_{ \pm 0}+\underline{\mathbf{q}}_{\mathbf{z}}=\mathbf{q}_{\mathbf{z}}\right][$ axiom of the +identity element in $\mathbf{z} \underline{\mathbf{Q}}]$.
(§10) $[\forall \mathbf{z} \in \mathbb{Z}]\left[\underline{q}_{\mathbf{z}}+\left[-\underline{q}_{+\mathbf{z}}{ }^{+1} \equiv\left[\underline{q}_{+\mathbf{z}} / \mathbf{q}_{ \pm 0}\right]+\left[\mathbf{q}_{ \pm 0} / \mathbf{q}_{+\mathbf{z}}\right]=\underline{\mathbf{q}}_{+\mathbf{z}}+\underline{\mathbf{q}}_{-\mathbf{z}}=\mathbf{q}_{ \pm 0}\right][\right.$ axiom of the +inverse elements in $z \underline{\underline{Q}}]$.
(§11) $[\forall \mathbf{z} \in \mathbb{Z}]\left[\exists\left[-\underline{\mathbf{q}}_{+\mathbf{z}}\right]^{+1} \equiv+\underline{\mathbf{q}}_{\mathbf{z}}^{+1} \equiv+\underline{\mathbf{q}}_{+\mathbf{z}}{ }^{-1} \equiv \mathbf{q}_{ \pm 0} / \underline{\mathbf{q}}_{+\mathbf{z}} \mid \underline{\mathbf{q}}_{+\mathbf{z}} \times \underline{\mathbf{q}}_{\mathbf{z}} \quad=\mathbf{q}_{ \pm 0}\right][$ axiom of the \times inverse elements in $\bar{Z} \underline{\underline{Q}}]$.
-- wherein S denotes the "Peano $\underline{\mathbf{s} u c c e s s o r ~ o p e r a t o r ", ~} s(\mathbf{z})=\mathbf{z + 1}$, and wherein $\underline{\underline{s}}$ denotes the $\underline{\underline{Q}} \underline{\underline{Q}}$ version of that $\underline{\mathbf{s}}$ uccessor function, $\underline{\underline{s}}\left[\underline{q}_{\mathbf{z}}\right]=\underline{\underline{q}}_{\mathbf{s}(\mathbf{z})}=\underline{\underline{q}}_{\mathbf{z}+1}$.

Each successor-system in the 'Gödelian Dialectic' of the F.E.E. axioms-systems progression --

is more complex, more "‘[thought-]concrete"', and more "definite" -- richer in "determinations", in "features", in 'ideo-ontology' -- than are its predecessor-systems, and hence is also richer in ideographical-linguistic expressive and descriptive capabilities and facilities than they are. Each successor-system also «aufheben»-"contains"', «aufheben»'"elevates"', and «aufheben»-transforms/-"'negates"' all of its predecessor-systems, and constitutes a "'conservative extension"' of its immediate predecessor-system. Corresponding to the first three stages of F.E.D.'s dialectical presentation of the progression within $\underline{\underline{Q}}$, expressed above, is that, to $\underline{\mathbf{s}}$ tage $\mathbf{S}_{\#}=3$, of F.E.D.'s dialectical presentation of the standard systems of arithmetic:

$M \equiv$ the "Winus" numbers $\equiv\{[\forall n>1 \in N][1-n]\} ;$

 $\left\{\left[\forall \mathbf{z}_{\mathbf{j}} \leq \mathbf{z}_{\mathbf{k}} \neq \pm 0 \in \mathbb{Z}\right]\left[\mathbf{z}_{\mathbf{j}} / \mathbf{z}_{\mathbf{k}}\right]\right\}$.

